The Entropy of Linear Cellular Automata with Respect to Any Bernoulli Measure

نویسنده

  • Hasan Akin
چکیده

This paper deals with the measure-theoretical entropy of a linear cellular automaton (LCA) Tf @-l,rD :m Ø m , generated by a bipermutative local rule f Ix-l, ... , xrM  ⁄i-l r ai xi Hmod mL (m ¥ 2 and l, r œ +), with respect to the Bernoulli measure mp on m  defined by a probability vector p  Ip0, p1, ... , pm-1M. We prove that the measure entropy of the one-dimensional LCA Tf @-l,rD with respect to any Bernoulli measure mp is equal to Hl + rL ⁄i0 m-1 pi log pi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quantitative Behavior of the Linear Cellular Automata

In this paper, we study the quantitative behavior of one-dimensional linear cellular automata Tf [−r,r], defined by local rule f(x−r, . . . , xr) = r ∑ i=−r λixi (mod m), acting on the space of all doubly infinite sequences with values in a finite ring Zm, m ≥ 2. Once generalize the formulas given by Ban et al. [J. Cellular Automata 6 (2011) 385-397] for measure-theoretic entropy and topologica...

متن کامل

The Topological Pressure of Linear Cellular Automata

This elucidation studies ergodicity and equilibrium measures for additive cellular automata with prime states. Additive cellular automata are ergodic with respect to Bernoulli measure unless it is either an identity map or constant. The formulae of measure-theoretic and topological entropies can be expressed in closed forms and the topological pressure is demonstrated explicitly for potential f...

متن کامل

On the Measure Entropy of Additive Cellular Automata f∞

We show that for an additive one-dimensional cellular automata on space of all doubly infinitive sequences with values in a finite set S = {0, 1, 2, ..., r-1}, determined by an additive automaton rule f(x ∞ f n-k, ..., xn+k) = (mod r), and a -invariant uniform Bernoulli measure μ, the measure-theoretic entropy of the additive one-dimensional cellular automata with respect to μ is equal to h ∑ −...

متن کامل

The Measure-theoretical Entropy of a Linear Cellular Automata with Respect to a Markov Measure

In this paper we study the measure-theoretical entropy of the one-dimensional linear cellular automata (CA hereafter) Tf [−l,r], generated by local rule f(x −l, . . . , xr) = r ∑ i=−l λixi(mod m), where l and r are positive integers, acting on the space of all doubly infinite sequences with values in a finite ring Zm, m ≥ 2, with respect to a Markov measure. We prove that if the local rule f is...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2009